Respuesta :
Answer:
The acceleration is [tex]a = 2.5 \ m/s^2[/tex]
Explanation:
From the question we are told that
The mass of the metal block is [tex]m_b = 2 \ kg[/tex]
The mass flow rate of the water is [tex]\r m = 1\ kg/s[/tex]
The speed of the water of the water release is [tex]v_w = 5 m/s[/tex]
Generally according to the law of conservation of linear momentum
[tex]p_i = p_f[/tex]
Now [tex]p_i[/tex] is the initial momentum of the system which mathematically represented as
[tex]p_i = m_w * v_w + m_b * v_b[/tex]
Now [tex]m_w[/tex] is the mass of water at the point of contact with the block which can be deduced as [tex]m_w = 1 \ kg[/tex]
Now since at initial the block is at rest
[tex]v_b = 0 \ m/s[/tex]
So
[tex]p_i = 1 * 5[/tex]
[tex]p_i = 5 \ kgm/ s[/tex]
And [tex]p_f[/tex] is the final momentum of the system which mathematically represented as
[tex]p_f = m_w * v__{fw} } + m_b * v__{fb}}[/tex]
So [tex]v__{fw} }[/tex] is the final velocity of water which is zero due to the fact that when the water hits the block it losses its momentum and eventually the velocity becomes zero
So
[tex]5 = 2 * v__{fb }[/tex]
Thus [tex]v__{fb }} = \frac{5}{2}[/tex]
[tex]v__{fb }} = 2.5 \ m/s[/tex]
Thus
[tex]p_f = 2.5 * 2[/tex]
[tex]p_f = 5 \ kgm /s[/tex]
Now the average momentum change is
[tex]p_a = \frac{p_i +p_f}{2}[/tex]
[tex]p_a = \frac{5+5}{2}[/tex]
[tex]p_a =5 kgm/s[/tex]
Now the force acting on the block is
[tex]F = \frac{p_a }{t}[/tex]
and from the question the initial movement of the block took 1s as it is a mass of water moving at a rate of 1kg/s that caused the first movement of the block
So
[tex]F= \frac{5}{1}[/tex]
[tex]F= 5 \ N[/tex]
Now the acceleration is
[tex]a = \frac{F}{m_b}[/tex]
=> [tex]a = \frac{5}{2}[/tex]
[tex]a = 2.5 \ m/s^2[/tex]