A sector with a radius of 8 cm has an area of 56pi cm2. What is the central angle measure of the sector in radians?

Answer:
[tex]\frac{7\pi}{4}[/tex].
Step-by-step explanation:
Given information:
Radius of circle = 8 cm
Area of sector = [tex]56\pi\text{ cm}^2[/tex]
Formula for area of sector is
[tex]A=\dfrac{1}{2}\theta r^2[/tex]
where, r is radius and [tex]\theta[/tex] is central angle in radian.
Substitute [tex]A=56\pi[/tex] and r=8 in the above formula.
[tex]56\pi=\dfrac{1}{2}\theta (8)^2[/tex]
[tex]56\pi=\dfrac{64}{2}\theta[/tex]
[tex]56\pi=32\theta[/tex]
[tex]\dfrac{56\pi}{32}=\theta[/tex]
[tex]\dfrac{7\pi}{4}=\theta[/tex]
Therefore, the measure of the sector in radians is [tex]\frac{7\pi}{4}[/tex].