Respuesta :

Answer:

[tex]\frac{7\pi}{4}[/tex].

Step-by-step explanation:

Given information:

Radius of circle = 8 cm

Area of sector = [tex]56\pi\text{ cm}^2[/tex]

Formula for area of sector is

[tex]A=\dfrac{1}{2}\theta r^2[/tex]

where, r is radius and [tex]\theta[/tex] is central angle in radian.

Substitute [tex]A=56\pi[/tex] and r=8 in the above formula.

[tex]56\pi=\dfrac{1}{2}\theta (8)^2[/tex]

[tex]56\pi=\dfrac{64}{2}\theta[/tex]

[tex]56\pi=32\theta[/tex]

[tex]\dfrac{56\pi}{32}=\theta[/tex]

[tex]\dfrac{7\pi}{4}=\theta[/tex]

Therefore, the measure of the sector in radians is [tex]\frac{7\pi}{4}[/tex].

ACCESS MORE
EDU ACCESS