In order to comply with the requirement that energy be conserved, Einstein showed in the photoelectric effect that the energy of a photon (h) absorbed by a metal is the sum of the work function (), the minimum energy needed to dislodge an electron from the metal's surface, and the kinetic energy (Ek) of the electron: h = + Ek. When light of wavelength 357.4 nm falls on the surface of potassium metal, the speed (u) of the dislodged electron is 5.8×105 m/s. What is (in kJ/mol) of potassium?

Respuesta :

Complete Question

 In order to comply with the requirement that energy be conserved, Einstein showed in the photoelectric effect that the energy of a photon (h) absorbed by a metal is the sum of the work function ([tex]\phi[/tex]), the minimum energy needed to dislodge an electron from the metal's surface, and the kinetic energy (Ek) of the electron: [tex]hf = \phi +Ek[/tex]. When light of wavelength 357.4 nm falls on the surface of potassium metal, the speed (u) of the dislodged electron is 5.8×105 m/s. What is work function (in kJ/mol) of potassium?

Answer:

The work function is  [tex]\phi_m = 242.195 \ KJ /mol[/tex]

Explanation:

From the question we are told that

     [tex]hf = \phi +Ek[/tex]

   Where h is the Planck's constant which has  a constant value of  [tex]h = 6.626 *10^{-34} J \cdot s[/tex]

              Ek  is the kinetic energy which is mathematically represented as

                 [tex]Ek = \frac{1}{2} m v^2[/tex]

Where m  is the mass of electron with a constant value  

               [tex]m = 9.11 *10^{-31} \ kg[/tex]

     The wavelength is  [tex]\lambda = 357.4 nm = 357.4 *10^{-9} \ m[/tex]

     The speed of the electron is [tex]v = 5.8*10^{5} m/s[/tex]

This photoelectric effect  can be mathematically defined as

f is the frequency of the incident light  which is mathematically represented as  [tex]f = \frac{c}{\lambda }[/tex]

   [tex]\phi[/tex] is the work function

So  we have  

             [tex]\frac{hc}{\lambda } = \phi + \frac{1}{2} mv^2[/tex]

substituting value

              [tex]\frac{6.626 *10^{-34}* 3*10^8}{357.4 *10^{-9}} = \phi + \frac{1}{2} * (9.11*10^{-31}) * (5.8*10^{8}) ^2[/tex]

              [tex]5.5618*10^{-19} = \phi + 1.54*10^{-14}[/tex]

      =>     [tex]\phi = 4.021*10^{-19} J[/tex]

For one mole of  one mole the work function is  

        [tex]\phi _m = \phi * N[/tex]

Where N is the avogadro's constant with a value  

             [tex]N = 6.022*10^{23}[/tex]

So

       [tex]\phi_m = 4.021*10^{-19} * 6.022 *10^{23}[/tex]

       [tex]\phi_m = 242194.90 J /mol[/tex]

now in KJ

        [tex]\phi_m = 242.195 \ KJ /mol[/tex]

             

       

ACCESS MORE
EDU ACCESS
Universidad de Mexico