Respuesta :

Answer:

12[tex]\pi[/tex] units^3

Step-by-step explanation:

V=1/3Bh

=1/3 Area of the base times height

Area of base: [tex]\pi[/tex]r^2=4[tex]\pi[/tex]

height=9

4[tex]\pi[/tex] times 9=36[tex]\pi[/tex]

1/3 of 36[tex]\pi[/tex] =12[tex]\pi[/tex]

Answer:

The volume of cone is [tex]\boxed{\tt{37.68}}[/tex] units³.

Step-by-step explanation:

As per given question we have provided :

  • ➝ Radius of cone = 2 units
  • ➝ Height of cone = 9 units

Here's the required formula to find the volume of cone :

[tex]{\longrightarrow{\pmb{\sf{V_{(Cone)} = \dfrac{1}{3}\pi{r}^{2}h}}}}[/tex]

  • ➝ V = Volume
  • ➝ π = 3.14
  • ➝ r = radius
  • ➝ h = height

Substituting all the given values in the formula to find the volume of cone :

[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{3}\pi{r}^{2}h}}}[/tex]

[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14{(2)}^{2}9}}}[/tex]

[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14{(2 \times 2)}9}}}[/tex]

[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14{(4)}9}}}[/tex]

[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14 \times 4 \times 9}}}[/tex]

[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14 \times 36}}}[/tex]

[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{\cancel{3}}\times 3.14 \times \cancel{36}}}}[/tex]

[tex]{\implies{\sf{Volume_{(Cone)} = 3.14 \times 12}}}[/tex]

[tex]{\implies{\sf{Volume_{(Cone)} = 37.68}}}[/tex]

[tex]\star{\underline{\boxed{\sf{\red{Volume_{(Cone)} = 37.68 \: {units}^{3}}}}}}[/tex]

Hence, the volume of cone is 37.68 units³.

[tex]\rule{300}{2.5}[/tex]

RELAXING NOICE
Relax