Find the volume of the cone

Answer:
12[tex]\pi[/tex] units^3
Step-by-step explanation:
V=1/3Bh
=1/3 Area of the base times height
Area of base: [tex]\pi[/tex]r^2=4[tex]\pi[/tex]
height=9
4[tex]\pi[/tex] times 9=36[tex]\pi[/tex]
1/3 of 36[tex]\pi[/tex] =12[tex]\pi[/tex]
Answer:
The volume of cone is [tex]\boxed{\tt{37.68}}[/tex] units³.
Step-by-step explanation:
As per given question we have provided :
Here's the required formula to find the volume of cone :
[tex]{\longrightarrow{\pmb{\sf{V_{(Cone)} = \dfrac{1}{3}\pi{r}^{2}h}}}}[/tex]
Substituting all the given values in the formula to find the volume of cone :
[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{3}\pi{r}^{2}h}}}[/tex]
[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14{(2)}^{2}9}}}[/tex]
[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14{(2 \times 2)}9}}}[/tex]
[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14{(4)}9}}}[/tex]
[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14 \times 4 \times 9}}}[/tex]
[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14 \times 36}}}[/tex]
[tex]{\implies{\sf{Volume_{(Cone)} = \dfrac{1}{\cancel{3}}\times 3.14 \times \cancel{36}}}}[/tex]
[tex]{\implies{\sf{Volume_{(Cone)} = 3.14 \times 12}}}[/tex]
[tex]{\implies{\sf{Volume_{(Cone)} = 37.68}}}[/tex]
[tex]\star{\underline{\boxed{\sf{\red{Volume_{(Cone)} = 37.68 \: {units}^{3}}}}}}[/tex]
Hence, the volume of cone is 37.68 units³.
[tex]\rule{300}{2.5}[/tex]