Respuesta :
Answer:
(1)[tex]csc A=\dfrac{17}{8}[/tex]
(2)[tex]sec A=\dfrac{17}{15}[/tex]
Step-by-step explanation:
[tex]Tan A=\dfrac{8}{15}\\$In Trigonometry, $Tan A=\dfrac{Opposite}{Adjacent}\\$Therefore:\\Opposite=8, Adjacent=15[/tex]
Using Pythagoras theorem
[tex]Hypotenuse^2=Opposite^2+Adjacent^2\\Hypotenuse^2=8^2+15^2\\Hypotenuse^2=289\\Hypotenuse^2=17^2\\Hypotenuse=17[/tex]
Question 1
Now, cosecant = 1/sin
Therefore:
[tex]csc A=\dfrac{Hypotenuse}{Opposite}\\csc A=\dfrac{17}{8}[/tex]
Question 2
Now, secant = 1/cos
Therefore:
[tex]sec A=\dfrac{Hypotenuse}{Adjacent}\\sec A=\dfrac{17}{15}[/tex]
Answer:
Step-by-step explanation:
1)The tangent trigonometric ratio is expressed as
Tan # = opposite side/adjacent side
Where
# represents the reference angle
From the information given,
Tan A = 8/15
Opposite side = 8
Adjacent side = 15
We would determine the hypotenuse,h by applying Pythagoras theorem which is expressed as
Hypotenuse² = opposite side² + adjacent side²
h² = 8² + 15² = 289
h = √289 = 17
Sin A = opposite side/hypotenuse
Sin A = 8/17
Csc A = 1/SinA
Csc A = 17/8
2) Cos A = adjacent side/hypotenuse
Cos A = 15/17
Sec A = 1/Cos A
Sec A = 17/15