Answer:
[tex]\Delta v = 287\,\frac{ft}{s}[/tex]
Step-by-step explanation:
First, velocity function are found by means of integration, knowing that both engines start at rest and, lastly, velocities are evaluated at given time:
Standard Engine
[tex]v_{f} = 6\cdot t +0.35\cdot t^{2}[/tex]
[tex]v_{f} (10) = 6\cdot (10) + 0.35\cdot (10)^{2}[/tex]
[tex]v_{f} (10) = 95\,\frac{ft}{s}[/tex]
Turbocharged Engine
[tex]v_{g} = 6\cdot t + 3.05\cdot t^{2} + 0.017\cdot t^{3}[/tex]
[tex]v_{g} (10) = 6\cdot (10) + 3.05\cdot (10)^{2} + 0.017\cdot (10)^{3}[/tex]
[tex]v_{g} (10) = 382\,\frac{ft}{s}[/tex]
Finally, the difference of the velocity of the turbocharged model with respect to the standard one is:
[tex]\Delta v = 382\,\frac{ft}{s} - 95\,\frac{ft}{s}[/tex]
[tex]\Delta v = 287\,\frac{ft}{s}[/tex]