Drag the tiles to the correct boxes to complete the pairs. Match the exponential functions with their horizontal asymptotes and y-intercepts. f(x) = 7x − 4 f(x) = 3x+2 + 4 f(x) = 9x+1 − 4 f(x) = 2x + 4 Horizontal Asymptote and y-Intercept Exponential Function horizontal asymptote: y = 4 y-intercept: (0, 5) arrowBoth horizontal asymptote: y = -4 y-intercept: (0, 5) arrowBoth horizontal asymptote: y = -4 y-intercept: (0, -3) arrowBoth horizontal asymptote: y = 4 y-intercept: (0, 13) arrowBoth

Respuesta :

Answer:

1). 7ˣ - 4, horizontal asymptote is -4, y intercept occurs is (0, -3)

2).  f(x) = [tex]3^{(x+2)}[/tex]+ 4, horizontal asymptote is 4, y intercept occurs is (0, 13)

3). f(x) = [tex]9^{(x+1)}[/tex] - 4, horizontal asymptote is -4, y intercept occurs is (0, 5)

4). f(x) = [tex]2^{x}[/tex] + 4, horizontal asymptote is 4, y intercept occurs is (0, 5)

Step-by-step explanation:

For the function f(x) = 7ˣ - 4 we have

Horizontal asymptote is the constant = -4 and y intercept occurs at x = 0 which gives y = 1-4 = -3 hence the y intercept occurs at (0, -3)

For the function, f(x) = [tex]3^{(x+2)}[/tex]+ 4

Horizontal asymptote = 4

For the y intercept we have at x = 0, y = [tex]3^{(0+2)}[/tex]+ 4 = 13

Hence the y intercept is at (0, 13)

For the function, f(x) = [tex]9^{(x+1)}[/tex] - 4

Horizontal asymptote = -4

For the y intercept we have at x = 0, y = [tex]9^{(0+1)}[/tex] - 4 = 5

Hence the y intercept is at (0, 5)

For the function, f(x) = [tex]2^{x}[/tex] + 4

Horizontal asymptote = 4

For the y intercept we have at x = 0, y = [tex]2^{0}[/tex] + 4 = 5

Hence the y intercept is at (0, 5)

ACCESS MORE
EDU ACCESS
Universidad de Mexico