Answer:
Step-by-step explanation:
Given the expression [tex]2(\frac{3x}{5}+2\frac{3y}{4}-\frac{x}{4}-1 \frac{1}{2}y+3)[/tex]
To simplify the expression, we need to first collect the like terms of the functions in parentheses as shown;
[tex]= 2(\frac{3x}{5}-\frac{x}{4}-1 \frac{1}{2}y+2\frac{3}{4}y+3)\\= 2(\frac{3x}{5}-\frac{x}{4}- \frac{3}{2}y+\frac{11}{4}y+3)\\[/tex]
Then we find the LCM of the resulting function
[tex]= 2(\frac{3x}{5}-\frac{x}{4}- \frac{3}{2}y+\frac{11}{4}y+3)\\= 2(\frac{12x-5x}{20} - (\frac{6y-11y}{4})+3)\\= 2(\frac{7x}{20}- (\frac{-5y}{4})+3 )\\= 2(\frac{7x}{20}+ \frac{5y}{4}+3 )\\= \frac{7x}{10} + \frac{5y}{2} +6\\= \frac{7x}{10} + 2\frac{1}{2}y+6\\[/tex]
The final expression gives the required answer