Respuesta :
Answer:
(a) [tex]u_B=8057218.9\ J/m^3[/tex]
(b) [tex]U=6324.58\ J[/tex]
Explanation:
(a) The magnetic energy density in the field is given by:
[tex]u_B=\frac{B^2}{2\mu_o}[/tex] ( 1 )
B: magnitude of the magnetic field
μo: magnetic permeability of vacuum = 4pi*10^-7 T/A
you replace the values of B and μo in the equation (1):
[tex]u_B=\frac{(4.50T)^2}{2(4\pi *10^{-7}T/A)}\\\\u_B=8057218.9\ J/m^3[/tex]
(b) The energy stored in the magnetic field of the solenoid:
[tex]U=\frac{B^2}{2\mu_o}V[/tex] ( 2 )
V: volume of the solenoid
[tex]V=\pi (\frac{0.062m}{2})^2(0.26m)=7.84*10^{-4}m^3[/tex]
Next, you replace V in the equation (2). Furthermore, you can use the result obtained in (a) for u_B:
[tex]U=u_BV=(8057218.9J/m^3)(7.84*10^{-4}m^3)\\\\U=6324.58\ J[/tex]
The magnetic energy density is 8.057 × 10⁶ J/m³. The energy stored in the magnetic field within the solenoid is 6.324 × 10³ J
The magnetic energy density of the superconducting solenoid can be expressed by using the relation:
[tex]\mathbf{\mu_{_B} = \dfrac{1}{2} \dfrac{B^2}{\mu_o} }[/tex]
where;
- B = magnetic field
- [tex]\mathbf{\mu_o}[/tex] = magnetic permeability
[tex]\mathbf{\mu_{_B} = \dfrac{1}{2} \Big( \dfrac{(4.50)^2}{4 \pi \times 10^{-7} }\Big)}[/tex]
[tex]\mathbf{\mu_{_B} =8057218.994 \ J/m^3}[/tex]
[tex]\mathbf{\mu_{_B} =8.057 \times 10^6 \ J/m^3}[/tex]
The energy stored in the magnetic field within the solenoid is determined by using the formula:
[tex]\mathbf{U = \mu_B \times A \times l}[/tex]
where;
- [tex]\mathbf{\mu_B}[/tex] = magnetic energy density
- A = area = πr²
- L = length
∴
[tex]\mathbf{U = 8.057 \times 10^6 \times \pi(\dfrac{6.2 \times 10^{-2} \ m}{2} )^2 \times (26\times 10^{-2} \ m)}[/tex]
[tex]\mathbf{U = 6324.4 \ J}[/tex]
U = 6.324 × 10³ J
Learn more about the magnetic field here:
https://brainly.com/question/14848188?referrer=searchResults