Answer:
a) The implied differential equation is [tex]\frac{dN}{725 - N} = kdt[/tex]
b) The general equation is [tex]N = 725 - C e^{-kt}[/tex]
c) The particular equation is [tex]N = 725 - 325 e^{-0.49t}[/tex]
d) The population when t = 5, N(5) = 697 = 700( to the nearest 50)
Step-by-step explanation:
The rate of change of N(t) can be written as dN/dt
According to the question, [tex]\frac{dN}{dt} \alpha (725 - N(t))[/tex]
[tex]\frac{dN}{dt} = k (725 - N)\\\frac{dN}{725 - N} = kdt[/tex]
Integrating both sides of the equation
[tex]\int {\frac{1 }{725 - N}} \, dN = \int {k} \, dt\\- ln (725 - N) = kt + C\\ ln (725 - N) = -(kt + C)\\725 - N = e^{-(kt + C)} \\725 - N = e^{-kt} * e^{-C} \\725 - N = C e^{-kt}\\N = 725 - C e^{-kt}[/tex]
When t = 0, N = 400
[tex]400 = 725 - C e^{-k*0}\\400 = 725 - C\\C = 725 - 400\\C = 325[/tex]
When t = 3, N = 650
[tex]650 = 725 - (325 * e^{-3k})\\325 * e^{-3k} = 75\\e^{-3k} = 75/325\\e^{-3k} = 0.23\\-3k = ln 0.23\\-3k = -1.47\\k = 1.47/3\\k = 0.49[/tex]
The equation for the population becomes:
[tex]N = 725 - 325 e^{-0.49t}[/tex]
At t = 5, the population becomes:
[tex]N = 725 - 325 e^{-0.49*5}\\N = 725 - 325 e^{-2.45}\\N = 696.95\\N(5) = 697[/tex]
N(5) = 700 ( to the nearest 50)