Respuesta :
Answer:
[tex]P(2450<X<4390)=P(\frac{2450-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{4390-\mu}{\sigma})=P(\frac{2450-3420}{495}<Z<\frac{4390-3420}{495})=P(-1.96<z<1.96)[/tex]
And we can find this probability with this difference:
[tex]P(-1.96<z<1.96)=P(z<1.96)-P(z<-1.96)[/tex]
If we use the normal standard table or excel we got:
[tex]P(-1.96<z<1.96)=P(z<1.96)-P(z<-1.96)=0.975-0.025=0.95[/tex]
And that represent 95% of the data. so then the percentage below 2450 is 2.5% and above 4390 is 2.5 %
Step-by-step explanation:
Let X the random variable that represent the birth weights of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(3420,495)[/tex]
Where [tex]\mu=3420[/tex] and [tex]\sigma=495[/tex]
We are interested on this probability
[tex]P(2450<X<4390)[/tex]
And we can use the z score formula given byÑ
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(2450<X<4390)=P(\frac{2450-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{4390-\mu}{\sigma})=P(\frac{2450-3420}{495}<Z<\frac{4390-3420}{495})=P(-1.96<z<1.96)[/tex]
And we can find this probability with this difference:
[tex]P(-1.96<z<1.96)=P(z<1.96)-P(z<-1.96)[/tex]
If we use the normal standard table or excel we got:
[tex]P(-1.96<z<1.96)=P(z<1.96)-P(z<-1.96)=0.975-0.025=0.95[/tex]
And that represent 95% of the data. so then the percentage below 2450 is 2.5% and above 4390 is 2.5 %