Respuesta :

Answer:

[tex]V_{sphere}=\frac{2V_{cylinder}}{3}[/tex]

[tex]V_{sphere}=7.33[/tex]

Step-by-step explanation:  

Information we have:

Volume of the cylinder: [tex]11ft[/tex]

The formula for volume of a cylinder is:

[tex]V_{cylinder}=\pi r^2h[/tex]

where [tex]r[/tex] is the radius and and h is the height

and the formula for the volume of a sphere is:

[tex]V_{sphere}=\frac{4\pi r^3}{3}[/tex]

we dont have the height of the sphere in the formula but the height is double the radius:

[tex]h=2r[/tex]

thus we manipulate the formula for the volume to get a 2r and the substitute with h:

[tex]V_{sphere}=\frac{2*2\pi r^2*r}{3} \\V_{sphere}=\frac{2\pi r^2(2r)}{3}[/tex]

and we substitute that [tex]h=2r[/tex]

[tex]V_{sphere}=\frac{2\pi r^2h}{3}[/tex]

the value [tex]r^2h[/tex] must be equal for the sphere and for the cylinder.

We clear [tex]r^2h[/tex] from the volume of the cylinder

[tex]V_{cylinder}=\pi r^2h[/tex]

  • [tex]r^2h=\frac{V_{cylinder}}{\pi}[/tex]

and we do the same for the volume of the sphere:

[tex]V_{sphere}=\frac{2\pi r^2h}{3}[/tex]

  • [tex]r^2h=\frac{3V_{sphere}}{2\pi}[/tex]

and we equal these two values for [tex]r^2h[/tex]  since we are told the radius and the height are the same:

[tex]\frac{V_{cylinder}}{\pi}=\frac{3V_{sphere}}{2\pi}[/tex]

and finally, we clear for the volume of the sphere:

[tex]V_{sphere}=\frac{V_{cylinder}*2\pi}{3\pi} \\V_{sphere}=\frac{2V_{cylinder}}{3}[/tex]this is the general expression.

and considering the volume of the cylinder is 11ft:

[tex]V_{sphere}=\frac{2*11}{3}\\ V_{sphere}=7.33[/tex]

Answer:

C

Step-by-step explanation:

RELAXING NOICE
Relax