Respuesta :
Answer:
[tex]V_{sphere}=\frac{2V_{cylinder}}{3}[/tex]
[tex]V_{sphere}=7.33[/tex]
Step-by-step explanation:
Information we have:
Volume of the cylinder: [tex]11ft[/tex]
The formula for volume of a cylinder is:
[tex]V_{cylinder}=\pi r^2h[/tex]
where [tex]r[/tex] is the radius and and h is the height
and the formula for the volume of a sphere is:
[tex]V_{sphere}=\frac{4\pi r^3}{3}[/tex]
we dont have the height of the sphere in the formula but the height is double the radius:
[tex]h=2r[/tex]
thus we manipulate the formula for the volume to get a 2r and the substitute with h:
[tex]V_{sphere}=\frac{2*2\pi r^2*r}{3} \\V_{sphere}=\frac{2\pi r^2(2r)}{3}[/tex]
and we substitute that [tex]h=2r[/tex]
[tex]V_{sphere}=\frac{2\pi r^2h}{3}[/tex]
the value [tex]r^2h[/tex] must be equal for the sphere and for the cylinder.
We clear [tex]r^2h[/tex] from the volume of the cylinder
[tex]V_{cylinder}=\pi r^2h[/tex]
- [tex]r^2h=\frac{V_{cylinder}}{\pi}[/tex]
and we do the same for the volume of the sphere:
[tex]V_{sphere}=\frac{2\pi r^2h}{3}[/tex]
- [tex]r^2h=\frac{3V_{sphere}}{2\pi}[/tex]
and we equal these two values for [tex]r^2h[/tex] since we are told the radius and the height are the same:
[tex]\frac{V_{cylinder}}{\pi}=\frac{3V_{sphere}}{2\pi}[/tex]
and finally, we clear for the volume of the sphere:
[tex]V_{sphere}=\frac{V_{cylinder}*2\pi}{3\pi} \\V_{sphere}=\frac{2V_{cylinder}}{3}[/tex]this is the general expression.
and considering the volume of the cylinder is 11ft:
[tex]V_{sphere}=\frac{2*11}{3}\\ V_{sphere}=7.33[/tex]
Otras preguntas
