Respuesta :

Answer:

44

Step-by-step explanation:

you take the biggest number, 245, and subtract it from the smallest number, 201, and you get 44

Answer:

The interquartile range for the data set is 35.5.

Step-by-step explanation:

To calculate the interquartile range for the data set, you must first arrange the numbers in increasing order:

241, 230, 201, 245, 209, 211, 242, 201, 204, 228, 242, 243

201, 201, 204, 209, 211, 228, 230, 241, 242, 242, 243, 245

Next, find the median of the data set:

201, 201, 204, 209, 211, 228, 230, 241, 242, 242, 243, 245

201, 204, 209, 211, 228, 230, 241, 242, 242, 243

204, 209, 211, 228, 230, 241, 242, 242

209, 211, 228, 230, 241, 242

211, 228, 230, 241

228, 230

Since there are two numbers left when calculating the median, the median is the average of the two numbers:

Average = [tex]\frac{sum of data}{number of values}[/tex]

A = [tex]\frac{228 + 230}{2}[/tex]

A = [tex]\frac{458}{2}[/tex]

A = 229

This means that Median = 229

Now, calculate the median of both the lower and upper half of the data:

201, 201, 204, 209, 211, 228  |  230, 241, 242, 242, 243, 245

201, 204, 209, 211  |  241, 242, 242, 243

204, 209  |  242, 242

206.5  |  242

Finally, the interquartile range is the difference between these two upper and lower medians:

242 - 206.5

IQR = 35.5

ACCESS MORE
EDU ACCESS
Universidad de Mexico