Respuesta :
Answer:
Circle: sin²(theta) + cos²(theta) = 1
Ellipse: sin²(theta) + cos²(theta) = 1
Hyperbola: sinh²(theta) - cosh²(theta) = 1
Step-by-step explanation:
Circle
Cartesian form from polar form:
x = rcos(theta)
y = rsin(theta)
x² + y² = r²sin²(theta) + r²cos²(theta)
x² + y² = r²(sin²(theta) + cos²(theta))
Using sin² + cos² = 1, we get
x² + y² = r²
Ellipse
x = acos(theta)
y = bsin(theta)
cos(theta) = x/a
sin(theta) = y/b
x²/a² + y²/b² = sin²(theta) + cos²(theta)
x²/a² + y²/b² = 1
Hyperbola
x = rcosh(theta)
y = rsinh(theta)
x²/r² - y²/r² = sinh²(theta) - cosh²(theta)
x²/r² - y²/r² = 1
Answer:
The general equation for any conic section is:
Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,
where A, B, C, D, E, F are fixed coefficients and A, B, C are not simultaneously equal to 0.
But, we can also write equations for conic section in terms of trigonometric functions using Parametric Equations:
For circle:
(x, y) = (rcos(theta), rsin(theta)) <=> x^2 + y^2 = r^2,
because (cos(theta))^2 + (sin(theta))^2 = 1
For ellipse:
(x, y) = (acos(theta), bsin(theta)) or x^2/a^2 + y^2/b^2 = 1
because (cos(theta))^2 + (sin(theta))^2 = 1
For hyperbola:
(x, y) = (asec(theta), btan(theta)) or x^2/a^2 - y^2/b^2= 1
because (cos(theta))^2 + (sin(theta))^2 = 1
Hope this helps!
:)