Respuesta :

Answer:

Step-by-step explanation:

some rules of logarithmic function

[tex]ln(a) - ln(b)=ln(\frac{a}{b})[/tex]

[tex]e^{ln(a)}=a[/tex]

[tex]ln(a)^{n}=nln(a)[/tex] vice-versa [tex]nln(a)=ln(a)^{n}[/tex]

If ㏑(a) = ㏑(b), then a = b

∴ [tex]2ln(e^{ln(2x)})-ln(e^{ln(10x)})=ln(30)[/tex]

Use the 2nd rule to simplify it

[tex]e^{ln(2x)}=2x\\e^{ln(10x)}=10x\\[/tex]

2㏑(2x) - ㏑(10x) = ㏑(30)

Use the 3rd rule in the 1st term

∵ 2㏑(2x) = ㏑(2x)² = ㏑(4x²)

∴ ㏑(4x²) - ㏑(10x) = ㏑(30)

- Use the 1st rule with the left hand side

[tex]ln(4x^{2})-ln(10x)=ln(\frac{4x^{2}}{10x})\\\\ln(\frac{4x^{2}}{10x})=ln(30)\\\\ \frac{4x^{2}}{10x}=\frac{2x}{5}=\frac{2}{5}x\\\\ ln(\frac{2}{5}x)=ln(30)[/tex]

Use the 4th rule

[tex]\frac{2}{5} x = 30[/tex]

Multiply both sides by 5

∴ 2 x = 150

- Divide both sides by 2

∴ x = 75

The value of x = 75

ACCESS MORE