Answer:
[tex]x^{2} + y^{2} - 10\cdot y = 0[/tex]
Step-by-step explanation:
The following expressions are used to transform from polar into rectangular form:
[tex]r = \sqrt{x^{2}+y^{2}}[/tex]
[tex]\sin \theta = \frac{y}{\sqrt{x^{2}+y^{2}}}[/tex]
Now, the variables are substituted and equation is finally simplified:
[tex]\sqrt{x^{2}+y^{2}} = 10\cdot \frac{y}{\sqrt{x^{2}+y^{2}} }[/tex]
[tex]x^{2}+y^{2} = 10\cdot y[/tex]
The equivalent equation in rectangular coordinates is:
[tex]x^{2} + y^{2} - 10\cdot y = 0[/tex]