Respuesta :

Answer:

[tex]x^{2} + y^{2} - 10\cdot y = 0[/tex]

Step-by-step explanation:

The following expressions are used to transform from polar into rectangular form:

[tex]r = \sqrt{x^{2}+y^{2}}[/tex]

[tex]\sin \theta = \frac{y}{\sqrt{x^{2}+y^{2}}}[/tex]

Now, the variables are substituted and equation is finally simplified:

[tex]\sqrt{x^{2}+y^{2}} = 10\cdot \frac{y}{\sqrt{x^{2}+y^{2}} }[/tex]

[tex]x^{2}+y^{2} = 10\cdot y[/tex]

The equivalent equation in rectangular coordinates is:

[tex]x^{2} + y^{2} - 10\cdot y = 0[/tex]

ACCESS MORE