Answer:
Approximately [tex]1.4\; \rm g[/tex], assuming that [tex]\rm CO_2[/tex] acts like an ideal gas.
Explanation:
Look up the ideal gas constant:
[tex]R = 8.314\; \rm m^3\cdot Pa \cdot K^{-1}\cdot mol^{-1}[/tex].
Convert the unit of temperature, pressure, and volume to standard units:
Assume that the [tex]\rm CO_2[/tex] here acts like an ideal gas. Apply the ideal gas law to find the number of moles of
[tex]\begin{aligned}n &= \frac{P \cdot V}{R \cdot T} \\&= \frac{\left(150 \times 10^3\right)\; \rm Pa \times \left(520 \times 10^{-6}\right)\; \rm m^{-3}}{8.314\; \rm m^3\cdot Pa \cdot K^{-1}\cdot mol^{-1} \times 298.15\; \rm K}\\ &\approx 3.2559 \times 10^{-2}\; \rm mol \end{aligned}[/tex].
Look up the following relative atomic mass data on a modern periodic table:
Calculate the molar mass of [tex]\rm CO_2[/tex]:
[tex]M(\mathrm{CO_2}) = 12.011 + 2 \times 15.999 = 44.009\; \rm g \cdot mol^{-1}[/tex].
The mass of that [tex]3.2559 \times 10^{-2}\; \rm mol[/tex] of [tex]\rm CO_2[/tex] in this balloon would be:
[tex]\begin{aligned}m &= n \cdot M \\ &= 3.2559 \times 10^{-2}\; \rm mol \times 44.009 \; \rm g \cdot mol^{-1} \\ &\approx 1.4\; \rm g\end{aligned}[/tex].