Answer:
63 inches
Step-by-step explanation:
Given: Manuel’s shadow is 109 inches when the sun shines at a 30° angle to the ground.
To find: Height of Manuel
Solution:
Let AB denotes height of Manuel and BC denotes shadow of Manuel.
[tex]\tan C=\frac{side \,\,opposite \,\,to\,\, the\,\, angle}{side \,\,adjacent \,\,to\,\, the\,\, angle}[/tex]
Side opposite to [tex]\angle C[/tex] = AB
Side adjacent to [tex]\angle C[/tex]= BC
[tex]\angle C=30^{\circ}[/tex]
[tex]\tan 30^{\circ}=\frac{AB}{BC}\\\frac{1}{\sqrt{3}}=\frac{AB}{109}\\AB=\frac{109}{\sqrt{3}}=62.93\approx 63\,\,inches[/tex]