A parallelogram has an area of x2+ 9x− 36.

a.What are expressions for the length and width of the parallelogram?

b.If x is an integer, what is the least possible value of x for a parallelogram to exist? Explain.

Respuesta :

Answer:

a) Length [tex]x + 12[/tex], Width [tex]x - 3[/tex], b) [tex]x = 3[/tex]

Step-by-step explanation:

a) The expressions for the length and width of the parallelogram can be determined by factorizing the polynomial:

[tex]A = x^{2} + 9\cdot x - 36[/tex]

[tex]A = (x+12)\cdot (x-3)[/tex]

Length

[tex]x + 12[/tex]

Width

[tex]x - 3[/tex]

b) Since area is a positive variable, the set of solutions encompass all values of x such that area is zero o greater. Then, there are two interval where A is positive:

- When both binomials are negative.

[tex]x \leq 3[/tex] and [tex]x \leq -12[/tex]

[tex]x \leq -12[/tex]

- When both binomials are positive.

[tex]x \geq 3[/tex] and [tex]x \geq -12[/tex]

[tex]x \geq 3[/tex]

Since x is an integer, x must be positive and therefore the least possible value of x is:

[tex]x = 3[/tex]

ACCESS MORE