Answer:
[tex]P(90<X<110)=P(\frac{90-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{110-\mu}{\sigma})=P(\frac{90-100}{15}<Z<\frac{110-100}{15})=P(-0.67<z<0.67)[/tex]
[tex]P(-0.67<z<0.67)=P(z<0.67)-P(z<-0.67)[/tex]
[tex]P(-0.67<z<0.67)=P(z<0.67)-P(z<0.67)=0.749-0.251=0.498[/tex]
Step-by-step explanation:
Let X the random variable that represent the IQ scores, and for this case we know the distribution for X is given by:
[tex]X \sim N(100,15)[/tex]
Where [tex]\mu=100[/tex] and [tex]\sigma=15[/tex]
We want to find this probability
[tex]P(90<X<110)[/tex]
And we can use the z score formula given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(90<X<110)=P(\frac{90-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{110-\mu}{\sigma})=P(\frac{90-100}{15}<Z<\frac{110-100}{15})=P(-0.67<z<0.67)[/tex]
And we can find this probability with this difference:
[tex]P(-0.67<z<0.67)=P(z<0.67)-P(z<-0.67)[/tex]
And in order to find these probabilities we can use the normal standard table or excel and we got.
[tex]P(-0.67<z<0.67)=P(z<0.67)-P(z<0.67)=0.749-0.251=0.498[/tex]