Answer:
P(2, then 2) = [tex]\frac{1}{36}[/tex]
P(3, then 5) = [tex]\frac{1}{36}[/tex]
P(4, then odd) = [tex]\frac{1}{12}[/tex]
Step-by-step explanation:
Given: A fair number cube is rolled
To find: P(2, then 2) , P(3, then 5) , P(4, then odd)
Solution:
Probability refers to chances of occurrence of some event.
Probability = Number of favourable outcomes/Total number of outcomes
Sample space = [tex]\left \{ 1,2,3,4,5,6 \right \}[/tex]
Total number of outcomes = 6
P(2, then 2) = P(2)P(2) = [tex]\frac{1}{6}(\frac{1}{6})=\frac{1}{36}[/tex]
P(3, then 5) = P(3)P(5) = [tex]\frac{1}{6}(\frac{1}{6})=\frac{1}{36}[/tex]
Odd numbers out of the sample space = [tex]\left \{ 1,3,5 \right \}[/tex]
P(4, then odd) = P(4)P(odd) = [tex](\frac{1}{6})(\frac{3}{6} )=\frac{1}{12}[/tex]