Answer:
[tex]t \approx 750550.12\,yr[/tex]
Step-by-step explanation:
The time constant of the isotope is:
[tex]\tau = \frac{1.3\times 10^{9}\,yr}{\ln 2}[/tex]
[tex]\tau \approx 1.876 \times 10^{9}\,yr[/tex]
The decay of the isotope is described by the following model:
[tex]\frac{m}{m_{o}} = e^{-\frac{t}{\tau} }[/tex]
Now, the time is cleared in the equation:
[tex]t = -\tau \cdot \ln \frac{m}{m_{o}}[/tex]
[tex]t = - (1.876\times 10^{9}\,yr)\cdot \ln 0.9996[/tex]
[tex]t \approx 750550.12\,yr[/tex]