Answer:
[tex]P(X<50)=P(\frac{X-\mu}{\sigma}<\frac{50-\mu}{\sigma})=P(Z<\frac{50-60.5}{7.2})=P(z<-1.46)[/tex]
And we can find the probability using the normal standard distribution or excel and we got:
[tex]P(z<-1.46)=0.0721[/tex]
Step-by-step explanation:
Let X the random variable that represent the shelf life of packed food of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(60.5,7.2)[/tex]
Where [tex]\mu=60.5[/tex] and [tex]\sigma=7.2[/tex]
We are interested on this probability
[tex]P(X<50)[/tex]
For this case we can solve this problem with the z score formula:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(X<50)=P(\frac{X-\mu}{\sigma}<\frac{50-\mu}{\sigma})=P(Z<\frac{50-60.5}{7.2})=P(z<-1.46)[/tex]
And we can find the probability using the normal standard distribution or excel and we got:
[tex]P(z<-1.46)=0.0721[/tex]