Answer:
The sample size required is 2188.
Step-by-step explanation:
The (1 - α)% confidence interval for the population proportion is:
[tex]CI=\hat p\pm z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
The margin of error for this interval is:
[tex]MOE= z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
The information provided is:
X = 162
n = 462
MOE = 0.02
Assume the confidence level as 95%.
Compute the sample proportion as follows:
[tex]\hat p=\frac{X}{n}=\frac{162}{462}=0.351[/tex]
The z-critical value for 95% confidence interval is:
[tex]z_{0.025}=1.96[/tex]
Compute the sample size required as follows:
[tex]MOE= z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
[tex]n=[\frac{z_{\alpha/2}\times \sqrt{\hat p(1-\hat p)}}{MOE}]^{2}[/tex]
[tex]=[\frac{1.96\times\sqrt{0.351(1-0.351)}}{0.02}]^{2}\\\\=2187.781596\\\\\approx 2188[/tex]
Thus, the sample size required is 2188.