Respuesta :
Answer:
(a) The mean and standard deviation of X is 2.6 and 1.2 respectively.
(b) The mean and standard deviation of T are 390 and 180 respectively.
(c) The distribution of T is N (390, 180²). The probability that all students’ requests can be accommodated is 0.7291.
Step-by-step explanation:
(a)
The random variable X is defined as the number of tickets requested by a randomly selected graduating student.
The probability distribution of the number of tickets wanted by the students for the graduation ceremony is as follows:
X P (X)
0 0.05
1 0.15
2 0.25
3 0.25
4 0.30
The formula to compute the mean is:
[tex]\mu=\sum x\cdot P(X)[/tex]
Compute the mean number of tickets requested by a student as follows:
[tex]\mu=\sum x\cdot P(X)\\=(0\times 0.05)+(1\times 0.15)+(2\times 0.25)+(3\times 0.25)+(4\times 0.30)\\=2.6[/tex]
The formula of standard deviation of the number of tickets requested by a student as follows:
[tex]\sigma=\sqrt{E(X^{2})-\mu^{2}}[/tex]
Compute the standard deviation as follows:
[tex]\sigma=\sqrt{E(X^{2})-\mu^{2}}\\=\sqrt{[(0^{2}\times 0.05)+(1^{2}\times 0.15)+(2^{2}\times 0.25)+(3^{2}\times 0.25)+(4^{2}\times 0.30)]-(2.6)^{2}}\\=\sqrt{1.44}\\=1.2[/tex]
Thus, the mean and standard deviation of X is 2.6 and 1.2 respectively.
(b)
The random variable T is defined as the total number of tickets requested by the 150 students graduating this year.
That is, T = 150 X
Compute the mean of T as follows:
[tex]\mu=E(T)\\=E(150\cdot X)\\=150\times E(X)\\=150\times 2.6\\=390[/tex]
Compute the standard deviation of T as follows:
[tex]\sigma=SD(T)\\=SD(150\cdot X)\\=\sqrt{V(150\cdot X)}\\=\sqrt{150^{2}}\times SD(X)\\=150\times 1.2\\=180[/tex]
Thus, the mean and standard deviation of T are 390 and 180 respectively.
(c)
The maximum number of seats at the gym is, 500.
According to the Central Limit Theorem if we have a population with mean μ and standard deviation σ and we take appropriately huge random samples (n ≥ 30) from the population with replacement, then the distribution of the sum of values of X, i.e ∑X, will be approximately normally distributed.
Here T = total number of seats requested.
Then, the mean of the distribution of the sum of values of X is given by,
[tex]\mu_{T}=n\times \mu_{X}=390[/tex]
And the standard deviation of the distribution of the sum of values of X is given by,
[tex]\sigma_{T}=n\times \sigma_{X}=180[/tex]
So, the distribution of T is N (390, 180²).
Compute the probability that all students’ requests can be accommodated, i.e. less than 500 seats were requested as follows:
[tex]P(T<500)=P(\frac{T-\mu_{T}}{\sigma_{T}}<\frac{500-390}{180})\\=P(Z<0.61)\\=0.72907\\\approx 0.7291[/tex]
Thus, the probability that all students’ requests can be accommodated is 0.7291.