Respuesta :
Complete Question
The complete question is shown on the first uploaded image
Answer:
The total pressure is [tex]P_T = 10.79*10^{5} N/m^2[/tex]
The temperature at the bottom is [tex]T_b = 284.2 \ K[/tex]
Explanation:
From the question we are told that
The length of the glass tube is [tex]L = 1.50 \ m[/tex]
The length of water rise at the bottom of the lake [tex]d = 1.33 \ m[/tex]
The depth of the lake is [tex]h = 100 \ m[/tex]
The air temperature is [tex]T_a = 27 ^oC = 27 +273 = 300 \ K[/tex]
The atmospheric pressure is [tex]P_a = 1.01 *10^{5} N/m[/tex]
The density of water is [tex]\rho = 998 \ kg/m^3[/tex]
The total pressure at the bottom of the lake is mathematically represented as
[tex]P_T = P_a + \rho g h[/tex]
substituting values
[tex]P_T = 1.01*10^{5} + 998 * 9.8 * 100[/tex]
[tex]P_T = 10.79*10^{5} N/m^2[/tex]
According to ideal gas law
At the surface the glass tube not covered by water at surface
[tex]P_a V_a = nRT_a[/tex]
Where is the volume of
[tex]P_a *A * L = nRT_a[/tex]
At the bottom of the lake
[tex]P_T V_b = nRT_b[/tex]
Where [tex]V_b[/tex] is the volume of the glass tube not covered by water at bottom
and [tex]T_b[/tex] i the temperature at the bottom
So the ratio between the temperature at the surface to the temperature at the bottom is mathematically represented as
[tex]\frac{T_b}{T_a} = \frac{d * P_T}{P_a * h}[/tex]
substituting values
[tex]\frac{T_b}{27} = \frac{0.133 * 10.79 *10^5}{1.01 *10^{5} * 1.5}[/tex]
=> [tex]T_b = 284.2 \ K[/tex]
