Respuesta :
Answer:
99% confidence interval for the proportion of all customers in Tacoma, Washington, who prefer boot-cut jeans is [0.225 , 0.405].
Step-by-step explanation:
We are given that a marketing researcher examined sales receipts for a random sample of 178 customers who purchased jeans from the firm’s Tacoma store. 56 of the customers in the sample purchased boot-cut jeans.
Firstly, the Pivotal quantity for 99% confidence interval for the population proportion is given by;
P.Q. = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion of customers who purchased boot-cut jeans = [tex]\frac{56}{178}[/tex] = 0.315
n = sample of customers = 178
p = population proportion of customers who prefer boot-cut jeans
Here for constructing 99% confidence interval we have used One-sample z test for proportions.
So, 99% confidence interval for the population proportion, p is ;
P(-2.58 < N(0,1) < 2.58) = 0.99 {As the critical value of z at 0.5% level
of significance are -2.58 & 2.58}
P(-2.58 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 2.58) = 0.99
P( [tex]-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99
P( [tex]\hat p-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99
99% confidence interval for p = [ [tex]\hat p-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex], [tex]\hat p+2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]]
= [ [tex]0.315-2.58 \times {\sqrt{\frac{0.315(1-0.315)}{178} } }[/tex] , [tex]0.315+2.58 \times {\sqrt{\frac{0.315(1-0.315)}{178} } }[/tex] ]
= [0.225 , 0.405]
Therefore, 99% confidence interval for the proportion of all customers in Tacoma, Washington, who prefer boot-cut jeans is [0.225 , 0.405].
The interpretation of the above confidence interval is that we are 99% confident that the proportion of all customers in Tacoma, Washington, who prefer boot-cut jeans will lie between 0.225 and 0.405.
Otras preguntas
