Answer:
The 95% confidence interval for the standard deviation of the diameter is (0.0014; 0.0036).
Step-by-step explanation:
We have to calculate a confidence interval for the standard deviation.
The confidence level is 95%.
The size of the sample is n=10.
The sample standard deviation is s=0.002.
The lower limit is calculated as:
[tex]LL=s\sqrt{\dfrac{n-1}{\chi_{(1-\alpha)/2;n-1}}}\\\\\\LL=0.002\sqrt{\dfrac{10-1}{19.02}}=0.002\sqrt{0.473}=0.002*0.688=0.0014[/tex]
[tex]UL=s\sqrt{\dfrac{n-1}{\chi_{\alpha/2;n-1}}}\\\\\\UL=0.002\sqrt{\dfrac{9}{2.7}}=0.002\sqrt{3.33}=0.002*1.826=0.0036[/tex]
The 95% confidence interval for the standard deviation of the diameter is (0.0014; 0.0036).