Respuesta :
Answer:
[tex](0.154-0.134) - 1.64 \sqrt{\frac{0.154(1-0.154)}{1231} +\frac{0.134(1-0.134)}{1067}}=-0.00402[/tex]
[tex](0.154-0.134) + 1.64 \sqrt{\frac{0.154(1-0.154)}{1231} +\frac{0.134(1-0.134)}{1067}}=0.044[/tex]
We are confident at 95% that the difference between the two proportions is [tex]-0.00402 \leq p_1 -p_2 \leq 0.044[/tex]
Since the confidence interval contains the value 0 we can conclude that at 10% of significance we don't have enough evidence to conclude that the true proportions for female and male with tattos differs
Step-by-step explanation:
Information given
[tex]p_1[/tex] represent the real population proportion of males with tattoos
[tex]\hat p_1 =\frac{190}{1231}=0.154[/tex] represent the estimated proportion of males with tattos
[tex]n_1=1231[/tex] is the sample size for males
[tex]p_2[/tex] represent the real population proportion of female with tatto
[tex]\hat p_2 =\frac{143}{1067}=0.134[/tex] represent the estimated proportion of females with tattos
[tex]n_2=1067[/tex] is the sample size of female
[tex]z[/tex] represent the critical value
Confidence intrval
The confidence interval for the difference of two proportions would be given by this formula
[tex](\hat p_1 -\hat p_2) \pm z_{\alpha/2} \sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1} +\frac{\hat p_2 (1-\hat p_2)}{n_2}}[/tex]
For the 90% confidence interval the value of [tex]\alpha=1-0.90=0.1[/tex] and [tex]\alpha/2=0.05[/tex], and the critical value for this case would be:
[tex]z_{\alpha/2}=1.64[/tex]
Replacing the info given we got:
[tex](0.154-0.134) - 1.64 \sqrt{\frac{0.154(1-0.154)}{1231} +\frac{0.134(1-0.134)}{1067}}=-0.00402[/tex]
[tex](0.154-0.134) + 1.64 \sqrt{\frac{0.154(1-0.154)}{1231} +\frac{0.134(1-0.134)}{1067}}=0.044[/tex]
We are confident at 95% that the difference between the two proportions is [tex]-0.00402 \leq p_1 -p_2 \leq 0.044[/tex]
Since the confidence interval contains the value 0 we can conclude that at 10% of significance we don't have enough evidence to conclude that the true proportions for female and male with tattos differs