Respuesta :

Answer:

AB = 8.857 cm

Step-by-step explanation:

Here, we are given a right angle [tex]\triangle ABC[/tex] in which we have the following things:

[tex]\angle A = 90 ^\circ\\\angle C = 41 ^\circ\\\text{Side }BC = 13.5 cm[/tex]

Side BC is the hypotenuse here.

We have to find the side AB.

Trigonometric functions can be helpful to find the value of Side AB here.

Calculating [tex]\angle B[/tex]:

Sum of all the angles in [tex]\triangle ABC[/tex] is [tex]180^\circ[/tex].

[tex]\Rightarrow \angle A + \angle B + \angle C = 180^\circ\\\Rightarrow 90^\circ + \angle B + 41^\circ = 180^\circ\\\Rightarrow \angle B = 49^\circ[/tex]

We know that cosine of an angle is:

[tex]cos \theta = \dfrac{\text{Base}}{\text{Hypotenuse}}\\\Rightarrow cos B = \dfrac{AB}{BC}\\\Rightarrow cos 49^\circ = \dfrac{AB}{13.5}\\\Rightarrow AB = 13.5 \times 0.656\\\Rightarrow AB = 8.857 cm[/tex]

So, side AB = 8.857 cm .

Answer:

AB = 8.856 cm
Rounded would get you 8.86 cm.
Hope this helps.

Step-by-step explanation:

I don't know how I got it but it's right.

ACCESS MORE