What is the average rate of change of the function over the interval x = 0 to x = 6?

f(x)=2x−1/3x+5 <--- This is a fraction
Enter your answer, as a fraction, in the box.

Respuesta :

Answer:

15 2/3, or 47/3

Step-by-step explanation:

I'm going to assume, correctly or not, that you actually meant f(x) = 2x^2 - (1/3)x + 5.  Double check on this right now, please.

If I'm right, then evaluate f(x) at x = 0 and x = 8:

f(0) = 5

and

f(8) = 2(8)^2 - (1/3)(8) + 5 = 128 - 8/3 + 5 = 133  - (2 2/3), or:   130 1/3

Then the average rate of change of f(x) = 2x^2 - (1/3)x + 5 over the interval [0,8] is:

               130 1/3 - 5         125 1/3

a. r. c. = ------------------- = ---------------- = 15 2/3, or 47/3

                    8 - 0                  8

The average rate of change of the function [tex]f(x)=2x-\frac{1}{3} x+5[/tex] over the interval [tex]x = 0[/tex] to [tex]x = 6[/tex] will be [tex]\frac{5}{12}[/tex] .

What is average rate of change of the function ?

Average rate of change of the function is a rate of change of the function, on an average, over the given interval. i.e. values of [tex]x[/tex] and [tex]y[/tex] .

Using slope formula we find Average rate of change of the function.

i.e. [tex]f(x)=\frac{f(x_{2} )-f(x_{1} )}{x_{2}-x_{1}}[/tex]

We have,

[tex]f(x)=2x-\frac{1}{3} x+5[/tex]

[tex]x_{1} = 0[/tex] to [tex]x_{2}= 6[/tex]

So,

First find [tex]f(x_{1})[/tex],

[tex]f(x_{1})=2x-\frac{1}{3} x+5[/tex]

[tex]f(0)=2*0-\frac{1}{3} *0+5[/tex]

[tex]f(x_{1})=5[/tex]

Now, find [tex]f(x_{2})[/tex],

[tex]f(x_{1})=2x-\frac{1}{3} x+5[/tex]

[tex]f(2)=2x*2-\frac{1}{3} *2+5[/tex]

[tex]f(2)=4-\frac{2}{3}+5=9-\frac{3}{2}[/tex]

[tex]f(x_{2})=\frac{15}{2}[/tex]

Now, putting values of [tex]f(x_{1})[/tex] and [tex]f(x_{2})[/tex] in given formula of  [tex]f(x)[/tex],

i.e.

[tex]f(x)=\frac{f(x_{2} )-f(x_{1} )}{x_{2}-x_{1}}[/tex]

[tex]f(x)=\frac{\frac{15}{2}-5 }{6-0}[/tex]

[tex]f(x)=\frac{\frac{15-10}{2} }{6}[/tex]

[tex]f(x)=\frac{5} {12}[/tex]

So, the average rate of change of the function is [tex]\frac{5}{12}[/tex], which is find out using the slope formula.

Hence, we can say that the average rate of change of the function [tex]f(x)=2x-\frac{1}{3} x+5[/tex] over the interval [tex]x = 0[/tex] to [tex]x = 6[/tex] will be [tex]\frac{5}{12}[/tex] .

To know more about average rate of change of the function click here

https://brainly.com/question/13274382

#SPJ3

ACCESS MORE