Quadratic equation. Find the value of m so that the roots of the equation (4 - m) x^2 + (2m + 4)x + (8m + 1) = 0 may be equal.

Respuesta :

The quadratic has one root with multiplicity 2 if the discriminant is 0, which is

[tex](2m+4)^2-4(4-m)(8m+1)[/tex]

(That is, for a quadratic [tex]ax^2+bx+c[/tex], the discriminant is [tex]b^2-4ac[/tex].)

Set the discriminant equal to 0 and solve for [tex]m[/tex]:

[tex](2m+4)^2-4(4-m)(8m+1)=0[/tex]

[tex]4m^2+16m+16+32m^2-124m-16=0[/tex]

[tex]36m^2-108=0[/tex]

[tex]36m(m-3)=0[/tex]

[tex]\implies m=0\text{ or }m=3[/tex]

ACCESS MORE