Respuesta :

Answer:[tex]\frac{1}{64}^{th}[/tex]

Step-by-step explanation:

Given

Suppose V is the original volume of cone having r as radius and h as height

If we multiply all the linear dimensions of ac one by [tex]\frac{1}{4}^{th}[/tex]

the [tex]r'=\frac{r}{4}[/tex]

[tex]h'=\frac{h}{4}[/tex]

Therefore new volume is

[tex]V'=\frac{1}{3}\pi r'^2h'[/tex]

[tex]V'=\frac{1}{3}\pi (\frac{r}{4})^2(\frac{h}{4})[/tex]

[tex]V'=\frac{1}{64}\times \frac{1}{3}\pi r^2h[/tex]

[tex]V'=\frac{V}{64}[/tex]

So new volume becomes [tex]\frac{1}{64}^{th}[/tex] of the original one

ACCESS MORE