monoko
contestada

A line passes through the point (6,-6) and has a slope of 3/2. Write a equation in point-slope form for this line

Respuesta :

Answer: [tex]y+6=\frac{3}{2} (x-6)[/tex]

Step-by-step explanation:

use the equation [tex]y-y_{1} =m(x-x_{1})[/tex]

we know the slope, y, and x, so plug in

[tex]y-(-6)=\frac{3}{2} (x-(6))[/tex]

[tex]y+6=\frac{3}{2} (x-6)[/tex]

Answer:

[tex]y=\frac{3}{2}x-15[/tex]

Step-by-step explanation:

The point-slope equation is [tex]y-y_{1} =m(x-x_{1} )[/tex]

Here our m is our slope which is [tex]\frac{3}{2}[/tex] and our [tex](x_{1},y_{1})[/tex] point is (6, -6)

Plugging in these values to our equation gives us

y - (-6) = [tex]\frac{3}{2}[/tex](x - 6) → distribute the negative to the -6 on the left side and then distribute the [tex]\frac{3}{2}[/tex] to the x term and the -6 on the right side → y + 6 = [tex]\frac{3}{2}x[/tex] - 9 → then subtract the 6 from both sides → [tex]y=\frac{3}{2} x-15[/tex]

ACCESS MORE