Aaronwu
contestada

In △ABC point D is on side BC such that AD = BD and AB = DC = AC. Find all the angles of △ABC.

Respuesta :

Answer:

[tex]36^\circ, 108^\circ, 36^\circ[/tex]

Step-by-step explanation:

In [tex]\triangle ABC[/tex], sides AB = AC.

We know the property that angles opposite to equal sides in a triangle are equal.

Hence,  [tex]\angle ABC = \angle ACB[/tex]

Let this angle be x.

So, [tex]\angle ABC = \angle ACB = x ...... (1)[/tex]

Similarly, in [tex]\triangle ABD[/tex]

Hence, [tex]\angle ABD = \angle BAD[/tex]

[tex]\angle ABD[/tex] and [tex]\angle ABC[/tex] are same.

By equation (1):

[tex]\angle ABD = \angle BAD = x ...... (2)[/tex]

Similarly, in [tex]\triangle ADC[/tex]:

[tex]\angle ADC = \angle DAC[/tex]

Let this angle be y.

[tex]\Rightarrow \angle ADC = \angle DAC = y ...... (3)[/tex]

We know that sum of all three angles in a triangle is equal to [tex]180 ^\circ[/tex].

In [tex]\triangle ADC[/tex], sum of all three angles:

[tex]x + y + y = 180^\circ\\\Rightarrow x + 2y = 180 ...... (4)[/tex]

In [tex]\triangle ABC[/tex], sum of all three angles:

[tex]x + (x+y) + x = 180\\\Rightarrow 3x + y = 180 ...... (5)[/tex]

Using elimination method to solve equation (4) and (5):

Multiplying equation (5) by 2 and subtracting (4) from it:

[tex]5x = 180\\\Rightarrow x = 36^\circ[/tex]

Putting value of x in (4):

[tex]36^\circ + 2y = 180\\\Rightarrow y = 72^\circ[/tex]

So, angles of [tex]\triangle ABC[/tex] are:

x, (x+y) and y

[tex]\Rightarrow 36^\circ, 108^\circ \text{ and } 36^\circ[/tex]

ACCESS MORE