The minute hand of a clock is 8 inches long. To the nearest tenth of an inch, how far does the tip of the minute hand travel as the time progresses from 12:00 to 12:25.


The tip of the minute hand travels ________ inches

Respuesta :

Answer:

The tip of the minute hand travels 20.9 inches.

Step-by-step explanation:

We are given that the minute hand of a clock is 8 inches long. And we have to find that how far does the tip of the minute hand travel as the time progresses from 12:00 to 12:25.

So, firstly we will find the circumference of circle;

       Circumference of circle (C)  =  [tex]2\pi r[/tex]   {where r is radius of circle}

                                                      =  [tex]2 \times \pi \times 8[/tex]   {given r = 8 inches long}

                                                      =  [tex]16 \pi[/tex]

Now, as we know that the minute hands completes the full circle in 60 minutes, therefore, the length of the arc between time 12:00 to 12:25 represents  [tex]\frac{25}{60}[/tex]  which is  [tex]\frac{5 }{12}[/tex]  of the circumference, that means;

The length of arc from time 12:00 to 12:25  =  [tex]\frac{5}{12}\times \text {Circumference of circle}[/tex]

                                                                       =  [tex]\frac{5}{12} \times 16 \pi[/tex]

                                                                       =  [tex]\frac{20}{3} \pi[/tex] = 6.67[tex]\pi[/tex]

Now, assuming value of [tex]\pi[/tex] = 3.14; so 6.67[tex]\pi[/tex] =  [tex]6.67 \times 3.14[/tex] = 20.9 inches (in nearest tenth)

Hence, the tip of the minute hand travels 20.9 inches.

ACCESS MORE