Blast furnaces extra pure iron from the Iron(IIl)oxide in iron ore in a two step sequence. In the first step, carbon and oxygen react to form carbon monoxide:
2C(s)+O2(g) arrow 2CO(g)
In the second step, iron(lll) oxide and carbon monoxide react to form Iron and carbon dioxide:
Fe203(s) + 3CO(g) arrow 2Fe(s)+ 3CO2(g)
Suppose the yield of the first step is 71.% and the yield of the second step is 72.%. Calculate the mass of oxygen required to make 7.0 kg of iron.
Be sure your answer has a unit symbol, if needed, and is rounded to 2 significant digits.

Respuesta :

znk

Answer:

5.9 kg  

Explanation:

We must work backwards from the second step to work out the mass of oxygen.

1. Second step

Mᵣ:                                     55.84

            Fe₂O₃ + 3CO  ⟶  2Fe  +  3CO₂

m/kg:                                    7.0

(a) Moles of Fe

[tex]\text{Moles of FeO} = \text{7000 g Fe} \times \dfrac{\text{1 mol Fe}}{\text{55.84 g Fe}} = \text{125 mol Fe}[/tex]

(b) Moles of CO

[tex]\text{Moles of CO} = \text{125 mol Fe} \times \dfrac{\text{3 mol CO}}{\text{2 mol Fe}} = \text{188 mol CO}[/tex]

However, this is the theoretical yield.

The actual yield is 72. %.

We need more CO and Fe₂O₃ to get the theoretical yield of Fe.

(c) Percent yield

[tex]\begin{array}{rcl}\text{Percent yield} &=& \dfrac{\text{ actual yield}}{\text{ theoretical yield}} \times 100 \, \%\\\\ 72. \, \% & = & \dfrac{\text{188 mol}}{\text{actual yield}} \times 100 \,\%\\\\0.72 &= &\dfrac{\text{188 mol}}{\text{actual yield}}\\\\\text{Actual yield} & = & \dfrac{\text{188 mol}}{0.72}\\& = & \textbf{261 mol}\\\\\end{array}[/tex]

We must use 261 mol of CO to get 7.0 kg of Fe.

2. First step

Mᵣ:                32.00

            2C   +  O₂   ⟶  2CO

n/mol:                             261

(a) Moles of O₂

[tex]\text{Moles of O}_{2} = \text{261 mol CO} \times \dfrac{\text{1 mol O}_{2}}{\text{2 mol CO}} = \text{131 mol O}_{2}[/tex]

(b) Mass of O₂

[tex]\text{Mass of O}_{2}= \text{131 mol O }_{2} \times \dfrac{\text{32.00 g O}_{2}}{\text{1 mol O}_{2}} = \text{4180 g O}_{2}[/tex]

However, this is the theoretical yield.

The actual yield is 71. %.

We need more C and O₂ to get the theoretical yield of CO.

(c) Percent yield

[tex]\begin{array}{rcl}71. \, \% & = & \dfrac{\text{188 mol}}{\text{actual yield}} \times 100 \,\%\\\\0.71 &= &\dfrac{\text{4180 g}}{\text{actual yield}}\\\\\text{Actual yield} & = & \dfrac{\text{4180 g}}{0.71}\\\\& = & \text{5900 g}\\& = & \textbf{5.9 kg}\\\end{array}[/tex]

We need 5.9 kg of O₂ to produce 7.0 kg of Fe.

ACCESS MORE