Using the function attached.
Find (f+G)(x)

We have been given two functions [tex]f(x)=-8x^3+5x^2+7x+4[/tex] and [tex]g(x)=8x^3-2x+3[/tex]. We are asked to find [tex](f+g)(x)[/tex].
We will use composite function property [tex](f+g)(x)=f(x)+g(x)[/tex] to solve our given problem.
[tex](f+g)(x)=-8x^3+5x^2+7x+4+8x^3-2x+3[/tex]
Now we will combine like terms as:
[tex](f+g)(x)=-8x^3+8x^3+5x^2+7x-2x+4+3[/tex]
[tex](f+g)(x)=5x^2+5x+7[/tex]
Therefore, the value of [tex](f+g)(x)[/tex] would be [tex]5x^2+5x+7[/tex].