Order the steps to solve the equation
log(x2 - 15) = log(2x) form 1 to 5.
x² - 2x - 15=0
Potential solutions are -3 and 5
IIIII
x² - 15 = 2x
x - 5 = 0 or x + 3 = 0
(x - 5)(x + 3) = 0

Respuesta :

Answer:

Attention for the conditions:

[tex]x^{2} -15>0\\2x>0\\so\\x>0[/tex]

Step-by-step explanation:

we have

[tex]log(x^{2}-15)= log(2x)\\\\x^{2} -15 = 2x\\\\x^{2} -5x+ 3x-15=0\\ (x^{2}-5x)+(3x-15)=0\\ x(x-5)+3(x-5)=0\\(x-5)(x+3)=0\\x-5=0, x=5 \\\\x+3=0, x= -3[/tex]

So the solutions are 5 because x>0

ACCESS MORE