Respuesta :
Answer:
The correct option is (D) [tex]y=\frac{4}{7}\ x+\frac{1}{7}[/tex].
Step-by-step explanation:
The two-point form for the equation of straight line is:
[tex](y-y_{1})=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\ (x-x_{1})[/tex]
The two points provided are:
A = (5, 3)
B = (12, 7)
Compute the equation of the trend line as follows:
[tex](y-y_{1})=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\ (x-x_{1})\\\\(y-3)=\frac{7-3}{12-5}\ (x-5)\\\\(y-3)=\frac{4}{7}\ (x-5)\\\\y-3=\frac{4}{7}\ x-\frac{20}{7} \\\\y=\frac{4}{7}\ x-\frac{20}{7}+3\\\\y=\frac{4}{7}\ x+\frac{-20+21}{7}\\\\y=\frac{4}{7}\ x+\frac{1}{7}[/tex]
Thus, the equation of the trend line is [tex]y=\frac{4}{7}\ x+\frac{1}{7}[/tex].
The correct option is (D).