can someone help me with algebra 2 with an explanation?

Answer: This took me a long time to type, hope you read it and find it helpful and easy to understand...
1. [tex]x=1[/tex]
2. [tex]x=\frac{3}{2}[/tex]
3. [tex]x=1[/tex]
4. [tex]x=\frac{6}{5}[/tex]
Step-by-step explanation:
1.
[tex]\frac{1}{x}-\frac{x-2}{3x}=\frac{4}{3x}[/tex]
To make it easier to add / subtract fractions, we are looking for common denominators. I can see that if I move the fraction on the left with a denominator 3x to the right, I'll be able to add two equations with like denominator.
Let's add [tex]\frac{x-2}{3x}[/tex]
[tex]\frac{1}{x}=\frac{4}{3x}+\frac{x-2}{3x}[/tex]
Add the numerators and keep the same denominator.
[tex]\frac{1}{x}=\frac{4+x-2}{3x}[/tex]
[tex]\frac{1}{x}=\frac{2+x}{3x}[/tex]
To get rid of the denominator x on the left side, we can multiply by x.
[tex](x)\frac{1}{x}=\frac{2+x}{3x}(x)[/tex]
[tex]1=\frac{2+x}{3}[/tex]
Now multiply by 3.
[tex](3)1=\frac{2+x}{3}(3)[/tex]
[tex]3=2+x[/tex]
Subtract 2.
[tex]3-2=x\\1=x[/tex]
The value of x is 1.
Proof.
[tex]\frac{1}{x}-\frac{x-2}{3x}=\frac{4}{3x}[/tex]
[tex]\frac{1}{1}-\frac{1-2}{3(1)}=\frac{4}{3(1)}[/tex]
[tex]1-\frac{-1}{3}=\frac{4}{3}[/tex]
[tex]1+\frac{1}{3}=\frac{4}{3}[/tex]
[tex]\frac{1*3+1}{3} =\frac{4}{3}\\\frac{4}{3}=\frac{4}{3}[/tex]
I can't show the proof to the following problems because I have a 5000 character limit.
-----------------------------------------------------------------------------------------
2.
[tex]\frac{5x-5}{x^2-4x} -\frac{5}{x^2-4x}=\frac{1}{x}[/tex]
Again, we have like denominators, therefore, we can simply subtract the numerators and keep the same denominator.
[tex]\frac{5x-5-5}{x^2-4x}=\frac{1}{x}[/tex]
[tex]\frac{5x-10}{x^2-4x}=\frac{1}{x}[/tex]
Again, we can multiply by x to get rid of the x in the denominator.
[tex](x)\frac{5x-10}{x^2-4x}=\frac{1}{x}(x)[/tex]
Do not distribute the x in the numerator yet because we're gonna eliminate it later.
[tex]\frac{(x)(5x-10)}{x^2-4x}=1[/tex]
Factor the denominator.
[tex]\frac{(x)(5x-10)}{(x)(x-4)}=1[/tex]
Simplify x's.
[tex]\frac{5x-10}{x-4} =1[/tex]
Multiply by x-4 to get rid of the denominator.
[tex](x-4)\frac{5x-10}{x-4} =1(x-4)[/tex]
[tex]5x-10=x-4[/tex]
Add 10
[tex]5x=x-4+10[/tex]
Subtract x
[tex]5x-x=-4+10[/tex]
Combine like terms;
[tex]4x=6[/tex]
Divide by 4.
[tex]\frac{4x}{4}=\frac{6}{4}[/tex]
[tex]x=\frac{6}{4}[/tex]
Simplify by 2.
6/2 = 3
4/2 = 2
[tex]x=\frac{3}{2}[/tex]
-----------------------------------------------------------------------
3.
[tex]\frac{x^2-7x+10}{x}+\frac{1}{x}=x+4[/tex]
Same denominator, add numerators.
[tex]\frac{x^2-7x+10+1}{x}=x+4[/tex]
[tex]\frac{x^2-7x+11}{x}=x+4[/tex]
Multiply by x to get rid of the x.
[tex](x)\frac{x^2-7x+11}{x}=(x+4)(x)[/tex]
[tex]x^2-7x+11=x^2+4x[/tex]
Subtract [tex]-x^2-4x[/tex]
[tex]x^2-7x+11-x^2-4x=0[/tex]
Combine like terms;
[tex]-11x+11=0[/tex]
Subtract 11.
[tex]-11x=-11[/tex]
Divide by -11
[tex]x=\frac{-11}{-11} \\x=1[/tex]
-------------------------------------------------------------------------
4.
[tex]\frac{x^2+7x+10}{5x-30}+\frac{x}{x-6}=\frac{x^2-13x+40}{5x-30}[/tex]
It's easier if you move the operation with denominator x+6 to the right side with negative sign and bring the operation on the right side to the left side with negative sign as well.
[tex]\frac{x^2+7x+10}{5x-30}-\frac{x^2-13x+40}{5x-30}=-\frac{x}{x-6}[/tex]
Now, since we have the same denominators, we can simply subtract numerators.
[tex]\frac{x^2+7x+10-(x^2-13x+40)}{5x-30} =-\frac{x}{x-6}[/tex]
Distribute the negative sign.
[tex]\frac{x^2+7x+10-x^2+13x-40}{5x-30} =-\frac{x}{x-6}[/tex]
Combine like terms;
[tex]\frac{20x-30}{5x-30}=-\frac{x}{x-6}[/tex]
Factor.
I can see that I can factor a 5 on both numerator and numerator. This will allow me to simplify them.
[tex]\frac{(5)(4x-6)}{(5)(x-6)} =-\frac{x}{x-6}[/tex]
Simplify.
[tex]\frac{4x-6}{x-6}=-\frac{x}{x-6}[/tex]
Multiply by x-6
[tex](x-6)\frac{4x-6}{x-6}=-\frac{x}{x-6}(x-6)[/tex]
This will simplify the denominators.
[tex]4x-6=-x[/tex]
Add x and 6.
[tex]4x+x=6\\[/tex]
Combine like terms;
[tex]5x=6[/tex]
Divide by 5.
[tex]x=\frac{6}{5}[/tex]