Respuesta :
Answer:
[tex]\displaystyle \int {sec^2(\theta)\sqrt{tan(\theta)}} \, d\theta = \frac{2[tan(\theta)]^\bigg{\frac{3}{2}}}{3} + C[/tex]
General Formulas and Concepts:
Algebra I
- Exponential Rule [Root Rewrite]: [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]
Calculus
Differentiation
- Derivatives
- Derivative Notation
Integration
- Integrals
- Indefinite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
U-Substitution
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {sec^2(\theta)\sqrt{tan(\theta)}} \, d\theta[/tex]
Step 2: Integrate Pt. 1
- [Integrand] Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle \int {sec^2(\theta)\sqrt{tan(\theta)}} \, d\theta = \int {sec^2(\theta)[tan(\theta)]^\bigg{\frac{1}{2}}} \, dx[/tex]
Step 3: Integrate Pt. 2
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = tan(\theta)[/tex]
- [u] Differentiate [Trigonometric Differentiation]: [tex]\displaystyle du = sec^2(\theta) \ d\theta[/tex]
Step 4: Integrate Pt. 3
- [Integral] U-Substitution: [tex]\displaystyle \int {sec^2(\theta)\sqrt{tan(\theta)}} \, d\theta = \int {u^\bigg{\frac{1}{2}}} \, du[/tex]
- [Integral] Reverse Power Rule: [tex]\displaystyle \int {sec^2(\theta)\sqrt{tan(\theta)}} \, d\theta = \frac{2u^\bigg{\frac{3}{2}}}{3} + C[/tex]
- Back-Substitute: [tex]\displaystyle \int {sec^2(\theta)\sqrt{tan(\theta)}} \, d\theta = \frac{2[tan(\theta)]^\bigg{\frac{3}{2}}}{3} + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e