Respuesta :
[tex]f(x)=\left|\dfrac{1}{3}x\right|\xrightarrow{T_{\vec{a}= <-2;\ 0 >}}g(x)=f(x+2)=\left|\dfrac{1}{3}(x+2)\right|=\left|\dfrac{1}{3}x+\dfrac{2}{3}\right|[/tex]
Look at the picture.
Look at the picture.

Answer:
[tex]f(x)=\frac{1}{3}|(x+2)|[/tex]
Step-by-step explanation:
We have been given a function [tex]f(x)=|\frac{1}{3}x|[/tex]. We are asked to translate the function to 2 units to the left.
We know that an absolute function is form [tex]y=a|x-h|+k[/tex], where, (h,k) is vertex.
Let us recall translation rules.
[tex]f(x)\rightarrow f(x-a)=\text{Graph shifted to right by a units}[/tex]
[tex]f(x)\rightarrow f(x+a)=\text{Graph shifted to left by a units}[/tex]
[tex]f(x)\rightarrow f(x)+a=\text{Graph shifted upwards by a units}[/tex]
[tex]f(x)\rightarrow f(x)-a=\text{Graph shifted downwards by a units}[/tex]
Absolute value of 1/3 will be 1/3.
[tex]f(x)=\frac{1}{3}|x|[/tex]
Therefore, our required function would be [tex]f(x)=\frac{1}{3}|x+2|[/tex].