In the figure, ΔABC ~ ΔDEF. Solve for x.

Answer:
[tex]x=5[/tex]
Step-by-step explanation:
It is given that ΔABC is similar to ΔDEF, thus using the similarity postulate, we have
[tex]\frac{CB}{EF}=\frac{AB}{ED}[/tex]
⇒[tex]\frac{24}{6}=\frac{20}{x}[/tex]
On Cross multiplying, we get
⇒[tex]x=\frac{20{\times}6}{24}[/tex]
⇒[tex]x=\frac{20}{4}[/tex]
⇒[tex]x=5[/tex]
Thus, the value of x will be 5.