Respuesta :
The domain is always real numbers, unless x is in the denominator or under a square root. If that happens, whatever values make the denominator 0 are excluded from the domain. Or whatever values make the square root negative are excluded from the range.
4x + 12 = 0
4x = -12
x = -3
The domain is all real numbers except at x = -3.
x > -3 or x < -3
The domain written in interval notation is:
[tex](-\infty, 3)~ \cup ~(-3, \infty)[/tex]
4x + 12 = 0
4x = -12
x = -3
The domain is all real numbers except at x = -3.
x > -3 or x < -3
The domain written in interval notation is:
[tex](-\infty, 3)~ \cup ~(-3, \infty)[/tex]
Domain: The set of all possible input values (commonly the "x" variable) It is the set of all real numbers for which a function is mathematically defined.
[tex]f(x) = \frac{5}{4c+12} [/tex]
[tex]x\ \textgreater \ -3 [/tex] or [tex]x=\ \textless \ -3[/tex]
[tex] 4x+12=0[/tex]
[tex] x=-3[/tex]
(-\infty},-3) ∪ (-3,\infty})
[tex]f(x) = \frac{5}{4c+12} [/tex]
[tex]x\ \textgreater \ -3 [/tex] or [tex]x=\ \textless \ -3[/tex]
[tex] 4x+12=0[/tex]
[tex] x=-3[/tex]
(-\infty},-3) ∪ (-3,\infty})