A closed container has 6.08 ⋅ 1023 atoms of a gas. Each atom of the gas weighs 1.67 ⋅ 10–24 grams. Which of the following shows and explains the approximate total mass, in grams, of all the atoms of the gas in the container?

Respuesta :

Total mass = 6.08 x 10^23 * 1.67 x 10^-24 = 1.01536

Answer:

[tex]10.1536\times  10^{-1}\approx 1.02[/tex] grams.

Step-by-step explanation:

We have been given that a closed container has [tex]6.08\times 10^{23}[/tex] atoms of a gas. Each atom of the gas weighs [tex]1.67\times 10^{-24}[/tex] grams.

To find the total mass, in grams, of all the atoms of the gas in the container, we will multiply number of atoms with mass of each atom.

[tex]\text{Total mass}=6.08\times 10^{23}\times 1.67\times 10^{-24}[/tex]

Using exponent property [tex]a^b\times a^c=a^{b+c}[/tex], we will get:

[tex]\text{Total mass}=6.08\times 1.67\times  10^{23}\times 10^{-24}[/tex]

[tex]\text{Total mass}=10.1536\times  10^{23+(-24)}[/tex]

[tex]\text{Total mass}=10.1536\times  10^{-1}[/tex]

[tex]\text{Total mass}=10.1536\times\frac{1}{10}[/tex]

[tex]\text{Total mass}=1.01536[/tex]

[tex]\text{Total mass}\approx 1.02[/tex]

Therefore, the approximate total mass, in grams, of all the atoms of the gas in the container is [tex]10.1536\times  10^{-1}\approx 1.02[/tex] grams.

ACCESS MORE