Respuesta :
The Pythagorean theorem states that the square of the hypotenuse is equal to the sum of the squares of the legs:
[tex]c^2=a^2+b^2.[/tex]
The hypotenuse is the side with the greatest length.
Check all options:
1. c=5, a=3, b=4:
[tex]5^2=25,\\3^2+4^2=9+16=25,\\5^2=3^2+4^2[/tex] true.
2. c=14, a=4, b=11:
[tex]14^2=196,\\4^2+11^2=16+121=137,\\14^2\neq 4^2+11^2[/tex] false.
3. c=17, a=9, b=14:
[tex]17^2=289,\\9^2+14^2=81+196=277,\\17^2\neq 9^2+14^2[/tex] false.
4. c=16, a=8, b=14:
[tex]16^2=256,\\8^2+14^2=64+196=260,\\16^2\neq 8^2+14^2[/tex] false.
5. c=17, a=8, b=15:
[tex]17^2=289,\\8^2+15^2=64+225=289,\\17^2=8^2+15^2[/tex] true.
Answer: correct options are A and E.
Using the Pythagorean Theorem the measures of the legs and hypotenuse of a right angled triangles are;
A. 3, 4, 5
E. 8, 15, 17
Further Explanation;
Pythagoras theorem
- Pythagorean theorem states that the square of the hypotenuse is equal to the sum of the squares of the legs.
- Therefore; if the legs of a right-angled triangle are a and b and the hypotenuse is c, then: [tex]a^{2} + b^{2} = c^{2}[/tex]
In this case;
Options A and E are correct because they obey the Pythagoras theorem;
1.Option A
3, 4, 5
[tex]a= 3, b=4, and c= 5[/tex]
Therefore using Pythagoras theorem;
[tex]a^{2} + b^{2} = c^{2}[/tex]
Replacing the variables
[tex]3^{2} + 4^{2} = 5^{2}[/tex]
[tex]9 + 16 = 25 = c^{2} [/tex] (True)
2. Option e
8, 15, 17
[tex]a= 8, b=15, and c= 17[/tex]
Therefore using Pythagoras theorem;
[tex]a^{2} + b^{2} = c^{2}[/tex]
Replacing the variables
[tex]8^{2} + 15^{2} = 17^{2}[/tex]
[tex]64 + 225= c^{2} = 289[/tex] (True)
Options B and C are incorrect because they don't follow the Pythagoras theorem.
1. Option B
[tex]a= 4, b=11, and c= 14[/tex]
Therefore using Pythagoras theorem;
[tex]a^{2} + b^{2} = c^{2}[/tex]
Replacing the variables
[tex]4^{2} + 11^{2} = 14^{2}[/tex]
[tex]16+ 121 = 137 ≠ c^{2} [/tex] (False)
2. Option C
[tex]a= 9, b=14, and c= 17[/tex]
Therefore using Pythagoras theorem;
[tex]a^{2} + b^{2} = c^{2}[/tex]
Replacing the variables
[tex]9^{2} + 14^{2} = 17^{2}[/tex]
[tex]c^{2} = 289[/tex]
[tex]81 + 196 = 277 ≠ c^{2} [/tex] (False)
3. Option D
[tex]a= 8, b=15, and c= 16[/tex]
Therefore using Pythagoras theorem;
[tex]a^{2} + b^{2} = c^{2}[/tex]
Replacing the variables
[tex]8^{2} + 15^{2} = 16^{2}[/tex]
[tex]c^{2} = 256[/tex]
[tex]64 + 225 = 289 ≠ c^{2} [/tex] (False)
Keywords: Right triangle, Pythagoras theorem
Learn more about:
- Pythagoras theorem: https://brainly.com/question/4098846
- Right triangle: https://brainly.com/question/4098846
Level; High school
Subject: Mathematics
Topic: Pythagoras theorem