Respuesta :

Step-by-step explanation:

We need to find the value of [tex]\tan(\dfrac{5\pi}{6})[/tex]. We can write it as :

[tex]\tan(\dfrac{5\pi}{6})=\tan(\pi -\dfrac{\pi}{6})[/tex]

We know that [tex](\pi -\theta)[/tex] comes in second quadrant. The value of tan is negative. Also, [tex](\pi -\theta)[/tex] do not change. So,

[tex]\tan(\pi -\dfrac{\pi}{6})=\tan(\dfrac{\pi}{6})=\tan30=\dfrac{1}{\sqrt 3}[/tex]

So, the value of [tex]\tan(\dfrac{5\pi}{6})[/tex] is [tex]\dfrac{1}{\sqrt 3}[/tex].

We have find the value of  [tex]tan\frac{5\pi }{6}[/tex].

The given function lies in 2nd quadrant.

In the 2nd quadrant value of tanx is negative.

Then ,

      [tex]= tan \frac{5\pi }{6} \\\\= tan ( \frac{(6-1)\pi }{6} )\\\\ = tan (\frac{6\pi - \pi }{6} )\\\\= tan (\frac{6\pi }{6} - \frac{\pi }{6} )\\\\= tan ( \pi -\frac{\pi }{6} )[/tex]

We know that ,  [tex]tan(\pi - \theta )= -tan\theta[/tex]

So,

          [tex]= tan ( \pi -\frac{\pi }{6} ) \\\\[/tex]

          [tex]= -tan (\frac{\pi }{6} )[/tex]

[tex]tan \frac{5\pi }{6} = - \frac{1}{\sqrt{3} }[/tex]

The value of  [tex]tan \frac{5\pi }{6}[/tex]  is  [tex]\frac{-1}{\sqrt{3} }[/tex] .

For more information about Trigonometry functions click the link given below.

https://brainly.com/question/13944654