Answer:
[tex]a=-23\\\\b=28[/tex]
Step-by-step explanation:
Let's start by using distributive multiplication:
[tex](a\pm b)(c\pm d)=ac\pm ad \pm bc \pm bd[/tex]
So:
[tex](5x-4)(3x+7)=15x^2+35x-12x-28\\\\[/tex]
Grouping like terms:
[tex]15x^2 +(35x-12x)-28\\\\15x^2+23x-28[/tex]
Now, [tex]15x^2+23x-28[/tex] is equal to:
[tex]15x^2-ax-b[/tex]
In this sense:
[tex]15x^2+23x-28=15x^2-ax-b[/tex]
In order to satisfied the equality:
[tex]23x=-ax\hspace{10}(1)\\\\and\\\\-28=-b\hspace{10}(2)[/tex]
Hence, from (1), let's solve for a:
[tex]23x=-ax\\\\-a=\frac{23x}{x} \\\\-a=23\\\\a=-23[/tex]
And from (2), let's solve for b:
[tex]-28=-b\\\\b=28[/tex]
Let's verify the result evaluating the values of a and b into the original equation:
[tex](5x-4)(3x+7)=15x^2+23x-28=15x^2 -ax -b\\\\(5x-4)(3x+7)=15x^2+23x-28=15x^2 -(-23)x -(28)\\\\(5x-4)(3x+7)=15x^2+23x-28=15x^2 +23x -28[/tex]
As you can see, the values satisfy the equation, therefore, we can conclude they are correct.