Respuesta :
Answer:
tan θ
Step-by-step explanation:
(sin θ) / (√(1 - sin²θ))
[tex]\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1[/tex]
[tex]\mathrm{Therefore\:}1-\sin ^2\left(x\right)=\cos ^2\left(x\right)[/tex]
[tex]=\frac{\sin \left(θ\right)}{\sqrt{\cos ^2\left(θ\right)}}[/tex] (The letter i or I is supposed to be theta, the mechanics aren't working)
[tex]\sqrt{\cos ^2\left(θ\right)}=\cos \left(θ\right)[/tex]
[tex]=\frac{\sin \left(θ\right)}{\cos \left(θ\right)}[/tex] (sin over cos θ is simply tan θ)
= tan θ
Answer:
a. tan Θ
Step-by-step explanation:
1 - sin²(theta) = cos²(theta)
sqrt[1 - sin²(theta)] = sqrt[cos²(theta)]
= cos(theta)
sin(theta)/cos(theta)
tan(theta)